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This paper investigates the non-uniform motion of a thin plate of finite aspect 
ratio, with a rounded leading edge and sharp trailing edge, executing heaving and 
pitching oscillations a t  zero mean lift. Such vertical motions characterize the 
horizontal lunate tails with which cetacean mammals propel themselves, and 
the same motions, turned through 90" to become horizontal motions of side- 
slip and yaw, characterize the vertical lunate tails of certain fast-swimming 
fishes. An oscillating vortex sheet consisting of streamwise and spanwise com- 
ponents is shed to trail behind the body and it is this additional feature of the 
streamwise component resulting from the finiteness of the plate that makes this 
study a generalization of the two-dimensional treatment of lunate-tail pro- 
pulsion by Lighthill (1970). The forward thrust, the power required, the energy 
imparted to the wake and the hydromechanical propulsive efficiency are deter- 
mined for this general motion as functions of the physical parameters defining 
the problem: namely the aspect ratio, the reduced frequency, tthe feathering 
parameter and the position of the pitching axis. The dependence of the thrust 
coefficient and propulsive eficiency on these physical parameters, for the com- 
plete range of variation consistent with the assumptJions of the problem, has been 
depicted graphically. 

1. Introduction 
Lighthill's ( 1969) study of the hydromechanics of aquatic animal locomotion 

brings out an important concept of the hydromechanical eficiency of the ani- 
mal's propulsive flexural movements, akin to the Froude efficiency of a propeller, 
defined as UPIE, where U is the mean forward velocity P is the mean thrust 
required to overcome the viscous drag and E is the mean rate a t  which the 
body movements do work against the surrounding fluid. The optimization of the 
hydromechanical efficiency may have been one of the most important guiding 
factors in the evolution of the fast-swimming aquatic animals and flying birds. 
This important physical parameter depends on their propulsive modes, which 
Lighthill (1969), following Breder (1926), divides, with a few exceptions, into 
two broad classes, namely the anguilliform mode of propulsion and the carangi- 
form mode of propulsion, the former being the pure undulatory form in which 
the whole body participates. I n  the carangiform mode the amplitude of undula- 
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tion can be quite small or even zero in the anterior portion, increasing posteriorly 
to a large value in the neighbourhood of the trailing edge. The elongated-body 
theory of Lighthill (1960a, b, 1970, 1971) is applicable to both the modes of pro- 
pulsion and throws light on the salient peculiarities of the fish body, namely the 
necking of the body anterior to the caudal fin, the dimensions of the dorsal and 
ventral fins, etc. Lighthill (1970) suggests that  all the fastest marine animals, 
particularly the scombroid fishes, including the tunny fishes, various unusually 
fast sharks and most of the cetacean mammals, have adopted essentially the 
carangiform mode of propulsion with their tails converging to a high-aspect-ratio 
crescent-moon shape through different pathways of evolution in the pursuit 
of high liydromechsnical propulsive efficiency. The lunate tail is horizontal and 
moves vertically in cetacean mammals. This arrangement is the one considered 
in the present paper, but all the conclusions remain valid after a rotation of axes 
through 90" for fishes with vertical lunate tails moving horizontally. 

Elongated-body theory becomes inapplicable for crescent-moon-shaped 
caudal fins and a start on their analysis has been made by Lighthill (1970) using 
a two-dimensional linearized theory which considers the movements of any 
vertical section with pitch angle fluctuating in phase with its heaving velocity 
for different pitching axes. Lighthill (1970) stresses the need for a three-climen- 
sioiial theory and here an attempt is made to lay the foundations for the future 
investigation of Lighthill's principal suggestion : namely that a lunate shape of 
the caudal fin seems to  be the culminating point of the process of the evolution 
of the fast-moving aquatic animal in the enhancement of speed and hydro- 
mechanical propulsive efficiency. 

Prandtl 8: Betz's (1927) concept of an infinite lifting line with sinusoidally 
varying strength in the spanwise direction was developed by von K&rm&n (1935) 
for fhite wings, in the steady case, by means of Fourier integrals involving linear 
superposition of infinitely long vortex elements of sinusoidal strength. Sears 
(1938) presents a method for finding the lift force on a finite rectangular wing, 
in the unsteady case, by approximating a wing of finite span by a superposition 
of sinusoidal aerofoils of infinite span. Although his superposition involves only 
a small number of terms a more accurate investigation for a rectangular wing 
using the f d l  Fourier-integral form is straightforward with modern computers. 
However, no attempt has so far been made to calculate the horizontal forces, 
of thrust or drag as the case may be, acting on the swimming plate and as this 
investigation is of great significance in the estimation of the propulsive efficiency 
a detailed study is carried out, using the concepts of von K&rm&n & Burgers 
(1934) and basing the analysis on the lifting-line assumption that the local 
flow around each cross-section remains two-dimensional but the local angle 
of incidence is influencecl by the whole pattern of the time-dependent streamwise 
and spanwise wake vorticity. These calculations, although limited to  a rect- 
angular planform, give a clear indication of the effect of aspect ratio on lunate- 
tail efficiency. That efficiency, as in the two-dimensional case, is found to be 
greatest when the pitching axis is close to the trailing edge, which may be taken 
as supporting Lighthill's (1970) general arguments for the high efficiency of 
fin shapes with trailing edges which are nearly straight. 
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After having obtained a theoretical basis for calculating the instantaneous lift 
and moment distribution, the forward thrust due to the lift force acting on the 
undulating surface is obtained. This supplements the suction force, acting on the 
rounded leading edge owing to the fast flow around it, to give the total forward 
thrust. Analytical expressions for the rate of working in the execution of heaving 
and pitching oscillations, the energy wasted and the hydromechanical propulsive 
efficiency are obtained in terms of the aspect ratio of the swimming plate, the 
aerofoil frequency parameter vclU (based on the radian frequency v ,  forward 
speed U and semi-chord c of the rectangular plate), the proportional feathering 
parameter 0, defined by Lighthill (1969) as the ratio of the plate slope to the slope 
of the path traversed by the pitching axis, and the position of the pitching axis. 
Numerical computations are carried out for the complete range of variation 
of these parameters and comparison is made with the results obtained by 
Lighthill (1970) for the two-dimensional case, by the acceleration-potential 
method. 

The work has all been motivated by considerations of aquatic-animal loco- 
motion, for which the frequency parameter takes values large enough (i.e. order 
unity) for unsteady effects to be really important. The conclusions may also be 
relevant to studies of flapping flight if used in combination with a non-zero mean 
angle of incidence, required for weight support. In  that case the thrust would be 
reduced by an amount equal to  the induced drag associated with the required 
lift. This, however, is an application where unsteady effects may often be of less 
significance because frequency parameters are typically lower. 

2. General formulation and evaluation of lift and moment 
We consider the incompressible flow generated by a thin rectangular wing 

moving along a straight line with mean forward velocity U and a t  the same time 
executing an oscillatory waving motion of small amplitude in the transverse 
direction. For large Reynolds numbers R, which is the domain of interest here, 
the swimming motion of the wing depends primarily on the inertial effects, which 
can be calculated from potential theory. The viscosity of the fluid is uiiimportaiit, 
except in its role of determining the vorticity shed in the wake and of producing a 
thin boundary layer, and hence friction at  the wing surface. As the wing attains 
forward momentum by waving motion, the propulsive force pushes the fluid 
backward with a net total momentum equal and opposite to that corresponding 
to  the force, while the frictional resistance of the wing and body gives rise to 
forward momentum of the fluid by entraining some of the fluid surrounding the 
wing and body. The momentum of reaction to inertia forces is concentrated in 
the vortex wake owing to the small thickness and amplitude of the undulatory 
trailing vortex sheet; this backward jet of fluid expelled from the wing can, 
however, be balanced by the momentum corresponding to the viscous drag of 
the wing and body and when they are cruising at  a constant speed, the forward 
and backward momenta exactly balance. This basic mechanism of swimming 
propulsion has been elucidated by von K&rm&n & Burgers (1934) and this con- 
cept is used here to investigate the hydromechanical propulsive efficiency of a 
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finite plate executing heaving and pitching oscillations in addition to recti- 
linear motion. 

This problem can be attacked without excessive complication when t h e  follow- 
ing assumptions used in the investigation of the steady motion of finite wings are 
made. 

(i) The flow around each section is two-dimensional but the local angle of 
attack is influenced by the whole pattern of the wake vorticity. 

(ii) The vertical movement of any part of the wing is small, 80 that the wing 
and every point of the trail of vortices which it leaves behind can be considered 
to  lie in the mean plane of the wing. 

(iii) The total circulation about the wing a t  any point is such that it produces 
tangential flow at  the trailing edge. 

Let the mean position of the wing, which has span 2s and chord 2c, be a strip 
of the x, y plane with the y axis along the span and the origin of the co-ordinate 
system coincident with the centre of the wing. Let the t’ransverse displacement 
of the wing, from the mean position z = 0, be 

(1) 

where V‘ and a’ are real and signify the amplitude of heaving and pitching 
motions, respectively, and x = b‘, z = 0 is the pitching axis. A 90” phase dif- 
ference between the heaving and pitching motions is assumed following Lighthill 
(1970), as any other phase difference represented by giving an imaginary part’ to 
I” is equivalent to a change in the position of the pitching axis. 

To be strictly accurate, the Fourier representation off(y) should be taken as a 
Fourier integral but for numerical purposes i t  is necessary to evaluate the integral 
as a sum of discrete terms; in other words, as a Fourier series. This is equivalent 
to considering a problem periodic in the spanwise direction: that is, the problem 
of the motion of a sequence of wings spaced periodically with a suitably large 
horizontal period. Here we take the period as 8s, where s is the semi-span. This 
implies the representation off(y) as a Fourier series 

z = f(y) [ V‘ - ia’(x - b‘)]d”t,  

m 
f(y) = c anc0spy ( -  4s < y < 44, 

n=O 

where ,u = nn/4s and the values of a, can be determined from the following 
conditions. 

(i) f (y)  = 1 for -8 < y < s. ( 2 4  

r (y )  = 0 outside - s  G y < s. (2b)  

(ii) Bound vorticity vanishes outside - s < y < s, i.e. 

A spot check using a period of 16s indicated very small differences from the case 
of a period of 8s reported here, presumably because the interference from addi- 
tional wings as far away as 8 semi-spans is already very small. 

Because of the lack of uniformity of the motion of the wing, the total circula- 
tion around the wing varies and a vortex wake having a continuous distribution 
of vortices is left behind. The intensity of the trailing vortices can be determined 
from the following Conditions. 
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( a )  The vorticity is restricted to the wing and the wake. 
( b )  The trailing vortices do not move behind the wing, but move with the fluid; 

that is to say, if the fluid is stationary, they will be stationary also, if we neglect 
small movements perpendicular to the direction of motion of the wing. 

The wake consists of vortices with streamwise and spanwise axes and the wing 
itself may be replaced by a bound vortex sheet comprising spanwise and chord- 
wise vortices. The total impulse of the vortex system, following Lamb (1957, 
chap. 7), is 

I = ;//s (XY, - YVX) 

where p is the density of the fluid, x and y are the co-ordinates measured in the 
chordwise and spanwise directions, yy(x, y ,  t )  and y,(z, y ,  t )  are the strengths 
per unit area of the respective components of the vortex sheet and X is the total 
area of the wing and the wake. The increase in the momentum of the fluid per 
unit time, given by Euler’s formula, results in a pressure of the fluid on the wing 
expressed by 

L = -d I /d t .  (3)  

This lift force includes the quasi-steady force, the force due to the added mass 
and the force due to the presence of the vortex wake behind the wing. With U 
as the mean forward velocity in the negative-x direction and 

U Y ,  t )  = IC Y J X ,  Y ,  t )  ax, 
- c  

Sears (1938) simplifies the expression for L to 

by making use of the following results. 
(i) The soIenoidaIity of the vortex intensity, i.e. 

ayxpx + ay,lay = 0. ( 5 )  

(ii) The vanishing of the spanwise and streamwise vortex strength at  the wing 
tips and the leading edge respectively, i.e. 

y&, * 8, t )  = 0, yz( - c, y ,  t )  = 0. (6) 

(iii) The vanishing of the total circulation for every wing cross-section, i.e. 
fl 

where < and 7 are used to denote the co-ordinates of the points in the wake and 
1 is the distance from the centre of the wing to the end of the discontinuity sur- 
face. 

(iv) The rate a t  which the vortices y, are shed a t  any section along the span 
is determined by the rate of change of the total circulation about the wing at  
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(v) The time d e r h t i v e  of the integral over the wake is given by 

The moment of momentum, acting about the half-chord position 5 = z = 0, 
for the vortices distributed along the section ( - c, I )  is given by 

In the case considered, the origin 0 moves with velocity U ,  therefore if we use 
this result for the variation of the moment of momentum we shall be taking into 
account not only the variation of this moment due to the variation of the 
forces acting on the wing, but also its variation as a result of the movement of the 
mid-chord with respect to which it is defined. In order to  consider the variation 
due to the variation of the forces and their positions we find the moment with 
respect to some point on the axis which is fixed in space but otherwise arbitrary. 
Let xo be the co-ordinate of the instantaneous position of 0 with respect to the 
stationary point, reserving x and 6 for the co-ordinates of the points referred to 
the moving point 0. Then dxo/dt = - U.  Since the elementary vortices are sta- 
tionary, for each of these vortices 

r + x o  = constant, yielding df ; /d t  = I ; .  

The moment of momentum relative to the stationary chord position will be 

Jf, = - P  2 IC - c  Y(X,Y ,  4 ( x + x o ) 2 d x  -g/; (5+xo)2y(5, 7 , t )  d,r. 

According to Euler's formula, the moment M of the forces acting on the wing is 

d J Z ,  ax,, w, i- U -  Jf = -- = -- 
dt dt 8x0 

Substit,uting for Jl,,, putting xo = 0 and carrying out the differentiation indicated 
in (9) yield 

This expression for the moment takes account of the moment due to the quasi- 
steady force (Joukowski force), the moment due to the force arising from the 
virtual mass and the moment due to the force resulting from the presence of the 
vortex wake. 

Relations (4) and (10) are the general expressions for the lift and moment 
acting on a rectangular wing and their evaluation depends essentially on the 
determination of the circulation induced by the wake vortex system and the 
simultaneous specification of the wake pattern consistent with the circulation 
around the wing. For wings of sufficiently large aspect ratio, the vortex strength 
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yl / (x ,  y ,  t )  and its integrals may be found using Munk’s (1922, 1924) two-dimen- 
sional steady aerofoil theory, viz., 

-C 

- C  c - x  
w-ith 
where wo is the relative normal velocity produced by the motion and the angle of 
attack of the wing and w1 is the relative normal velocity induced by the wake 
vortex system. 

M x ,  Y ,  t )  = zoo(x, y, t )  4- %(Z, y ,  t ) ,  

Similarly, by making use of 

where u is the x component of fluid velocity, the expressions for 

needed in the evaluation of L and iM can be calculated to  be 

From (1)) consider a single harmonic, i.e. an aerofoil of infinite span, the vertical 
velocity wo(x, y ,  t )  a t  any point is given by 

where V = ivV‘, a = iva’ and b = b’- U/iv. If 
wo(x, y ,  t )  = a, [ V - ia(x - b)]  eiVt cospy, (16) 

r (y ,  t )  = a,GcVedYt cospy 

is taken as the instantaneous circulation around the aerofoil the distribution of 
the spanwise vortex component in the wake, making use of 

d r p t  + uy,(x, y ,  t )  = 0, 
i V  

U is given by y,( [,y, t )  = -a, - Gc exp 

It follows from (5) that the chordwise component is 

y J t , ~ , t )  = a,~GcVexp{iv[t-(f;-c)/Ul)sin~uy. (17)  
Using ( i 6 )  and (17 )  in the Biot-Savat law for the induced velocity due to a vortex 
system and simplifying gives 

i v  GcVp . 
U 2?? 

wl(x, y ,  t )  = --a, - ezv(t+clU)cospy 
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where KO and K ,  are modified Bessel functions of the second kind. Substituting 
for w(x ,  y, t) in (1 1 )  yields 

[ ictr(:! 1 ) -<:PI ] , q y , t )  = a,,cVcospyei”t %+- - - 

where 

with m = pc, I, and I, modified Bessel functions of the first’ kind and w = vc/U. 
The constant G is found, on comparing the two expressions for r (y ,  t ) ,  to be given 
by 

2( 1 - 0) - i&J( 1 - 27) 
l+Fl 

G = 7 r  9 

where 0 = a’U/vV’ is the proportional feathering parameter, expressing the 
ratio of the plate slope t o  the slope of the path traversed by the pitching axis, and 
7 is the non-dimensional parameter, defined by b’lc, expressing the position of 
the pitching axis. 

From (19) and (4) in conjunct.ion with 

= -7r Vc2cospyeiYt 1 +--- ) [ i p  FiG1 
where 
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L, and ill,, and L, and $1. being the real and imaginary parts of F, and F, respec- 
tively. 

The analytic expression for the moment, which is needed in the determination 
of the rate of working of the plate, can be determined from ( lo) ,  which with the 
help of (14) and (9) simplifies to 

PC2ar n1= - p -  X ( C 2 - X 2 ) k W ( X , y , I ) d X -  ---pi7 Y Y ( X , Y , t ) X d X .  ( I O a )  
at r --c 4 at Sr, 

The integral in the first term on the right-hand side, making use of (15) and (18), 
works out to be 

where 

Using (i0a) in conjunction with ( I ~ u ) ,  (19) and (20) the expression for fM, after 
involved algebraic simplifications, is given by 

where 

G, = 807, G, = OW - 8w-l ( I  - 0) ,  G, = Gll L; + G12L2, G4 = Glz L; - G,, L2, 
GI1 = - 4( 1 - 8) + 2( 1 - 0) (TI - SW-~N,) +OW(  1 - 2 7 )  (T2+ 8~- ’N1) ,  

G~~ = 2 0 W ( i  - ~ 7 ) + 2 ( ~ , + 8 w - 1 ~ , )  (1-0) - e w ( i - 2 ~ ) ( ~ , - 8 w - 1 ~ . )  

and TI and T, are the real and imaginary parts of F4. 
Expressions ( 2 1 )  and ( 2 3 )  for the lift and moment reduce in the two-dimen- 

sional case to Lighthill’s (1970) and TVu’s (1971) results, obtained by the method 
of acceleration potential, which adds to  the confidence in this method. 

The total forward thrust results from the pressure forces exerted by the fluid 
on the wing and the suction force on the rounded leading edge. The contribution 
from the pressure force comes from its action on the surface inclined backward 
a t  an angle ia’a,eiut cospy. An important coiitribution to  the thrust comes from 
the suction force acting on the rounded leading edge because of the fast flow 
around it. The leading-edge suction arises from the singular pressure a t  the 
leading edge and its determination requires that the nonlinear terms in the 
expression for the pressure in the neighbourhood of the leading edge be taken 
into account. As the unsteady suction force presents the same problem as 
that for steady motion, Blasius’s theorem gives the mean suction force as 

hJ A 12, 
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where 

with 

] at. 
m (m2 + w 2 )  t mw(t2- i p  

+ i  (m2t2+w2) ( t * -  I ) $  m??+d 
= T S p  e - m t l ,  (mt) ( ( 2 0 d )  

The mean forward thrust due to the suction force resulting from a single harmonic 
over one complete period, say, is given by 

= 2npcsu2V’2a;f3(p), 
where 

E2(Xi + Ng) - E,(LIN, +L2N2) -E4(L;N,-L2N,)  
J5;2 + L; f 3 h )  = El+ 9 

E ,  = ( i  - e)z + 0 ~ 7 2 ,  E ,  = (1 - e ) 2  + e w ( 4  - qy, 
E3 = 2( 1 - 0)’ - O2w27( 1 - 27), E4 = Ow( 1 - O ) ,  

and iV, and A’, are the real and imaginary parts of 2F3. 
The mean forward thrust due to the suction force on the leading edge of t,he 

rectangular wing resulting from the superposition of all the harmonics is given 

m 

n = o  

by 

PI = 477pcsu2V’2 2 a;f3(p). 

Similarly the total mean forward thrust due to the lift force is the mean resultant 
of L = LeiVt given by (21) acting on the surface ( I ) ,  viz. sW[L( -ia’)]u:, which 
on substituting the value of 1 yields 

W 

P2 = 277pcsuUV‘a’ c ai f l ( /c ) .  
? l =  0 

The total mean forward thrust due to the lift and suction forces is 
ffi 

P = 277pcsu2 V’2 c a;{Ofi(p) + 2f3(p)}. 
n=O 

(24) 

The forward thrust is represented by a thrust coefficient C7* equal to the thrust 
per unit wing area divided by $p( v V ’ ) 2 .  Tli~is C,  = P/2pc.su2 VI2, which gives 

(25) 

The rate of working in combined heaving and pitching equals the lift force 
times the rate of heaving of t,he centroid, plus the pitching moment about the 
centroid times the rate of pitching. If these two quantities are each expressed 
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as the real parts of the complex exponentials aeiVt and betvt, their mean product 
is &2[Lv( - u'b' - i V ' )  + &?( - va')] an cospy. 

On substituting for L and B) simplifying and summing over all the harmonics, 
the mean rate of working of the rectangular wing comes out to be 

where 

The hydromechanical propulsive efficiency is defined by Lighthill (1969) 
as II'P/E, where U is the mean forward velocity, P is the mean thrust required 
to overcome the viscous drag the plate would sustain when maintaining a uni- 
form velocity U and E is the mean rate a t  which the flexural movements do work 
against the surrounding water. Using this definition 

fAp) = G, + G 3 / ( G 2  + L3. 

m 

(27) 

3. Numerical computations and discussion of the results 
The analytical expressions for the thrust coefficient and hydromechanical 

propulsive efficiency are functions off,(p), f2 ( ,u ) ,  f3(,u) andf4(p), which in turn are 
known in terms of the physical parameters through L,, L,, M,, M,, T,, T,, N ,  and 
N , ,  given by the integrals appearing in (20a-d).  These integrals possess remov- 
able singularities a t  the lower limit and a t  infinity and their evaluation can be 
effected by changing the variable of integration through the transformation 
t = (2u2 - 2u + 1)/u2. This yields 

u2 d u  
(m2u: + u4w2) ( 1  + u2/al)t ) 

Tl = 2mi (m2 + 02) (ma)+ e-ma {&(ma) - 13(mu)> 

( 1  + u2/a1)+ (1 - U)Z 
T2 = 2m) w (mu)& e-lna {l,(ma) - 13(ma)> d u ,  s: m2a: + u4u2 

F L M  64 2 5  
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0 0.5 1.0 0 0.5 1 .II 

where a, = 2u2 - 2u + 1 and a = and all the integrals are well behaved. 
To findfl(p),f2(p),f3(p) andf,(p) for n = 0 the values of L,, H1, L,, JV,, N, ,  N , ,  Tl 
mid T2 are needed. These are given by the limiting values 

which through complicated integrations of the modified Bessel functions turn 
out to be 

L, = - 1 + &r[{Jo(w) - Y,(w)} w cos w + {Y,(GJ) + J,(o)} w sin w ] ,  

L, = -an[{Yo(w) +J,(o))wcosw-{J,(w) -Y,(w)}wsinw], 

M, = 1 +~n{J , (w)cosw+Y,(w)s inw} ,  

M, = - w-l+  hn{J,(w) sin w - Yl(o) cos w } ,  
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0 0.5 0 0.5 

VC/  u V C I  u 
FIGURE 2. Predicted thrust coefficient for a wing of aspect ratio 4 vs. vc/U. 

0 = 0, 0.2, 0.4, 0.6, 0.8, (a) b' = 0, (b) b' = +c, (c) b' = C ,  ( d )  b' = $c.  

- 
0 u 0.5 1.0 0 0.5 1 .0 

vc/ u vc/ u 
FIGURE 3. Predicted efficiency for a wing of aspect ratio 6 vs. vc/U. 

19 = 0,  0.2, 0.4, 0.6, 0.8. (a)  b' = 0,  ( b )  b' = +c, (c) b' = C ,  (d )  b' = $c. 

Z j - 2  



386 M .  G .  Chopra 

- , 
0 0.5 1 .oo 0 0.5 1 .o 

lJcl u 1clU 

FIGURE 4. Predicted thrust coefficient foi a wing of aspect ratio 6.0 V8.  vclu. 
0 = 0, 0.2, 0.4, 0.6, 0.8. ( a )  b' = 0, ( b )  6' = $c, (c) b' = C, ( d )  b' = #c. 

X1 = Bn{Y,(o) w sin w + J,(o) w cos w ] ,  

N, = - ;.{Y,(w) w cos w - J,(w) w sin 01, 

If we seek the value of the thrust coefficient and hydromechanical efficiency for 
zero reduced frequency, the above expressions for n = 0 yield, on making use of 
the asymptotic expansions for the Bessel funct,ions, L, = 0,  L, = 0, wJ& = 0, 
cdM2 = 0, Nl = 0,  N2 = 0, w2Tl = 0, and w2T2 = 0. For w = 0 and n + 0 only L, 
a,nd AT, are non-zero and the expression for the hydromechanical propulsive 
efficiencv reduces to  

which works out to be less than unity as expected because part of the energy is 
wasted in the formation of the wake. 

Numerical computations of the integrals involved have been carried out by 
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Romberg's extrapolation method and t o  obtain values of the thrust coefficient 
and hydromechanical propulsive efficiency correct to two decimal places twenty 
terms of the series occurring in (25 )  and (27 )  are needed. The coefficients of t'he 
Fourier series can be determined by satisfying (i) conditions ( 2 a )  for y = &@+l)s 
for m = 1,2 ,  ..., 5 and (ii) condition ( 2 b )  for y = &(2m-1)s for m = 6,7,  ..., 20. 
Condition ( 2  b )  becomes on using ( 12) and simplifying 

2 ( 1 - 0 )  
19 

n=O 
19 

?%=O 
Thus C ancos&m(2m-l) = 1 for m = 1,2 ,  ..., 5 ,  

and 

1- L L '  L 19 n n ( 2 m -  1 )  

40 - [  ( I +  :+ 2 ( 1 - 8 )  C a,cos 
n = O  

for m = 6 , 7 ,  ..., 20 

constitute a system of twenty linear algebraic equations, which are solved by a 
Gaussian method to yield the values of the coefficients a,. Substituting these 
values in ( 2 5 )  and (27 )  the values of the thrust coefficient and efficiency are found 
for the complete range of variation of the physical parameters consistent with 
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8=0.8 
I I 

0 0.5 I .o 

I I I 
0 0.5 I .o 0 0.5 I .O 

1a/U VCI  u 
FIGURE 6. Predicted thrust coefficient for a wing of aspect ratio 8 us. vc /U.  

0 = 0, 0.2, 0.4, 0.6, 0.8. (a) b' = 0, ( b )  b' = &, (c) 6' = C, ( d )  b' = $c. 

the assumptions of the problem. Computations for different wing aspect ratios 
show that a decrease in the aspect ratio results in a decrease in the thrust co- 
efficient. Sample curves for aspect ratios of 4, 6 and 8 are given (in figures 1-6) 
to stress the findings of the analysis. It may be pointed out that  these are the 
aspect ratios of many of the fins of the fast-moving fishes. 

The thrust coefficient decreases as the feathering parameter increases, which 
implies that for significant positive thrust 8 must be less than one. Comparison 
with Lighthill's (1970) result shows that finiteness results in a considerable 
decrease in the forward thrust. It is noticed that, for larger values of 8 which are 
essential for maintaining high efficiency, the thrust values are greater for posi- 
tions of the pitching axis which are farther downstream and this increase is 
significant only for higher values of the feathering parameter and reduced 
frequency. This result is found to  be consistent with Lighthill's (1970) observa- 
tions. The increase in the thrust coefficient witah t,he downstream shift of the 
pitching axis, significant for larger values of0 and vc/U, is due to  a steep increase 
in the leading-edge suction force which also account,s for the fall in the backward- 
inclined lift force. This high suction force on which we are relying for optimum 
thrust may not be realized owing to a possible separation of the flow, which will 



Hydromechanics of ltcnate-tail swimming propulsion 391 

result in a considerable decrease in the thrust coefficient. This indicates that 
forcing of the pitching axis downstream behind the trailing edge to achieve a 
high thrust coefficient is not advisable, which is consistent with Lighthill’s (1970) 
two-dimensional theory. 

The main feature of this analysis is that i t  gives the modified values of the 
thrust coefficient and propulsive efficiency for a wide variety of the physical 
parameters, taking into account the streamwise wake vorticity, and also confirms 
that a reduction in the aspect ratio of the wing results in a decrease in the thrust 
coefficient and the hydromechanical efficiency. 
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